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While many constraints on learning must be relatively experience-independent, past expe-
rience provides a rich source of guidance for subsequent learning. Discovering structure in
some domain can inform a learner’s future hypotheses about that domain. If a general
property accounts for particular sub-patterns, a rational learner should not stipulate sepa-
rate explanations for each detail without additional evidence, as the general structure has
‘‘explained away’’ the original evidence. In a grammar-learning experiment using tone
sequences, manipulating learners’ prior exposure to a tone environment affects their sen-
sitivity to the grammar-defining feature, in this case consecutive repeated tones.
Grammar-learning performance is worse if context melodies are ‘‘smooth’’ — when small
intervals occur more than large ones — as Smoothness is a general property accounting
for a high rate of repetition. We present an idealized Bayesian model as a ‘‘best case’’
benchmark for learning repetition grammars. When context melodies are Smooth, the
model places greater weight on the small-interval constraint, and does not learn the rep-
etition rule as well as when context melodies are not Smooth, paralleling the human learn-
ers. These findings support an account of abstract grammar-induction in which learners
rationally assess the statistical evidence for underlying structure based on a generative
model of the environment.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In traditional learning theories, the relationship be-
tween knowledge and learning is static: Learning builds
knowledge subject to a priori, biological constraints. A sel-
dom-explored area is the dynamic interplay between
learning and knowledge: (how) can previous learning
change subsequent learning? Ignoring this feedback can
lead to incorrect attribution of observed constraints to bio-
logically provided ‘‘knowledge’’ instead of to previous
learning.

Untangling the contributions of experience-indepen-
dent biology and prior learning has been particularly
important in studying infant cognition: if an infant learns
one pattern and not another in the absence of a priori
. All rights reserved.

Dawson).
differences in difficulty, it is tempting to attribute the dis-
crepancy to biology. This conclusion would be premature
without further examination, however.

Previous research suggests that infants reorganize their
domain knowledge in the first year, and even in the labora-
tory. Infants reorganize their phonetic categories (Werker
and Tees, 1984; Bosch and Sebastián-Gallés, 2003; Maye
et al., 2002) and exhibit shifts in what features they will
consider for linguistic stress rules (Gerken and Bollt,
2008). In music, relative pitch takes over from absolute
pitch as the dominant cue for organizing melodies (Saffran
and Griepentrog, 2001; Saffran, 2003), and infants tonal
and rhythmic categories change with cultural context
(Hannon and Trehub, 2005; Lynch and Eilers, 1992).

Marcus et al. (1999, 2007) found that 7-month-old in-
fants learn an AAB or ABB pattern over sequences of sylla-
bles, but infants the same age fail when the elements are
non-linguistic events such as musical tones or animal
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noises. It was suggested that the child’s innate endowment
might attribute abstract, relational properties to speech,
but not other auditory stimuli. While this is possible, in-
fants can learn AAB-style structure with pictures of dogs
(Saffran et al., 2007) and simple shapes (Johnson et al.,
2009), and rats can learn such generalizations from tones
(Murphy et al., 2008), casting doubt on the notion that lan-
guage is intrinsically privileged for rule-learning.

Dawson and Gerken (2009) found that while 7-month-
olds fail at learning AAB and ABA patterns with tones or
chords, 4-month-olds succeed. They suggested that
7-month-olds’ failure may stem from their having learned
certain general properties about music: If they have
learned, for example, that the intervals from one pitch to
the next tend to be small in magnitude (Ortmann, 1926;
Dowling, 1967; Dawson, 2007; Temperley, 2008), a high
repetition rate would become much less surprising, and
hence less informative about the abstract AAB-style struc-
ture. This change in information value is an example of
‘‘explaining away’’, a phenomenon central to cognitive
models in a variety of areas including visual inference
(Kersten et al., 2004), linguistic processing (Ciaramita and
Johnson, 2000), and causal reasoning (Xu and Garcia,
2008; Gergely and Csibra, 2003).

The basic idea is as follows: When an observed pattern
could arise from multiple causes, the causes ‘‘compete’’
over the evidence in the data, even when they do not con-
flict with each other a priori. A classic example comes from
Pearl (1988): Both rain and a sprinkler can cause my lawn
to be wet. By itself, observing the wet ground increases the
plausibility of both causes. If I discover that the ground is
also wet next door, this provides additional evidence for
the rain hypothesis, but is not directly relevant to the
sprinkler hypothesis: my sprinkler has no effect on the
neighbor’s lawn, and so, by itself, the state of the latter is
irrelevant to inferences about the former. However, by
increasing the likelihood of rain, the neighbor’s wet lawn
helps to explain away the evidence for the sprinkler.
Although the sprinkler may well have run, my wet lawn
constitutes weaker evidence than before.

In music, repetition is an ambiguous event. On the one
hand, it constitutes a ‘‘sameness’’ relation between two
tones. It is also an interval of magnitude zero. If one as-
sumes that any tone is equally likely at any point (the tone
distribution is uniform), hearing every melody begin with
two repeated notes would be quite surprising, and evi-
dence for a ‘‘sameness’’ interpretation would be strong. If,
however, one knows that tones nearby in time also tend
to be nearby in pitch (melodies are usually ‘‘Smooth), rep-
etition should be more common (qua interval of distance
zero), and it should take more evidence to conclude that
repetition is special.
2. Human experiment

We examine whether the presence of a ‘‘Smoothness
Constraint’’ on melodies in the broader environment will
lead adult learners to discount evidence for a repetition
rule by reducing its surprise value. Since small intervals
are not surprising in a Smooth environment, a learner
modeling this tendency should not treat frequent repeti-
tions as evidence for additional structure: Learners previ-
ously exposed to the Smooth environment should less
readily infer the existence of a repetition rule than those
familiarized with non-Smooth melodies. On this account,
it is not merely the high rate of repetition in the Smooth
environment that leads to discounting of the evidence for
a repetition rule; rather, it is that a high rate of repetition
is an incidental consequence of the Smoothness property.
If the environment contains a large number of repetitions
in the absence of a Smoothness Constraint, no discounting
should occur.

The central prediction is that a repetition rule will be
more difficult to learn in a Smooth melodic environment.
To test this, participants are familiarized with one of three
melodic contexts. In the Uniform condition, each of a set of
tones is equally likely at any point. In the Smooth condi-
tion, small intervals are more common than large intervals.
In the Repetition condition, repetition alone is more fre-
quent than other intervals. The latter two groups are sub-
divided into high repetition (Low Variance) and low
repetition (High Variance) conditions, with the absolute
repetition rate matched between each Smooth group and
its Repetition counterpart.

Following exposure to these contexts, participants per-
form a grammar-induction task where half of participants
learn a repetition-initial (AABCD) grammar, and half learn
a repetition-final (DCBAA) grammar. If learners model the
overall interval distribution, the Smooth context should
portray repetition more as a zero-magnitude interval ex-
pected to be frequent, and less as a specific grammatical
feature. Learners in this context should exhibit decreased
sensitivity to positional repetition, as well as decreased
grammar-learning performance. No explaining-away
should occur in the Repetition groups, since no broader
property accounts for the high rate of repetition.

2.1. Methods

2.1.1. Participants
One hundred and thirty-eight University of Arizona

undergraduates participated in the study for course credit.

2.1.2. Materials and procedures
The experiment consists of a ‘‘Context’’ phase and a

Grammar-Learning phase. The latter contains four blocks,
each with training and test components. ‘‘Sentences’’ con-
sist of five tones generated using the FM Synthesizer in the
MIDI Toolbox for MATLAB (Eerola and Toiviainen, 2004).
The first four are 250 ms, followed by 50 ms gaps. The last
tone is 500 ms. Musically speaking, melodies contain four
eighth notes followed by a quarter note, played at 200
beats per minute.

2.1.3. Procedures: context phase
The Context phase contains two randomized blocks of

100 sentences. Ten are ‘‘probe’’ sentences, after which
either the same sentence is repeated or one of the other
ten probe sentences is played. On probe trials, participants
have 3 s to register ‘‘same’’ or ‘‘different’’ pairs via a but-
ton-press. Failure to respond is considered incorrect. Each
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block lasts about five minutes. Discrimination scores did
not significantly differ across context conditions
(F(4,133) = 1.60, p = 0.18, MSE = 6.95). Data from partici-
pants who did not perform above chance on this discrimi-
nation task (15 or more out of 20 correct) was discarded, as
these participants (n = 18) presumably either could not
distinguish differences among melodies, or were not
attempting to succeed. The proportion of discards did not
significantly differ across groups (p = 0.19, Fisher’s exact
test).

During context exposure, all participants see a group of
eight ‘‘aliens’’ (Folstein et al., 2007), half ‘‘star-chested’’ and
half ‘‘brick-chested’’.
2.1.4. Materials: context phase
Participants are assigned to the Uniform (n = 24),

Smooth (n = 48) or Repetition (n = 48) contexts. The
Smooth and Repetition conditions are divided into High
Variance (HV) and Low Variance (LV) sub-conditions. All
context melodies comprise a ‘‘vocabulary’’ of six tones
(MIDI values: 57, 58, 61, 64, 67 and 68). The restricted
vocabulary, with uneven steps between tones, parallels
natural musical scales, which partially divorce ‘‘diatonic’’
and acoustic interval measures.

In the Uniform condition, each tone is equiprobable and
independent of the last. The probability of repetition at any
given point is 1/6. The empirical distribution is shown in
Fig. 1a.

In the Smooth condition, the first tone is chosen uni-
formly from the six possible. For subsequent tones, a sam-
ple is generated from a truncated normal distribution on
the interval [0.5,6.5]. The mean is an integer corresponding
to the previous tone (the lowest tone is 1; the highest tone
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Fig. 1. Interval distributions by context, collapsed over preceding pitch. Zero is
note, etc. More small intervals occur across all conditions due to the bounded p
6). The variance is 4.00 in the HV condition and 1.44 in the
LV condition. The tone generated is the nearest integer to
the sample. The resulting distribution reflects the bias to-
ward small intervals in Western folk music. The empirical
interval distributions are shown in Fig. 1b–c.

The Repetition conditions control for the absolute rate
of repetition, removing the overall ‘‘Smoothness’’ con-
straint. Here, the LV and HV conditions (Fig. 1d and e)
are matched to their Smooth counterparts in number of
repetitions, but now the remaining notes are equiprobable.
Here, the high repetition rate cannot be explained by a
general bias for small intervals; instead, a learner modeling
the tone distribution must encode repetitions separately.

Empirical repetition rates by position and Context are
shown in Fig. 2.
2.1.5. Procedures: grammar-learning phase
After the context phase, participants move on to the

grammar-learning phase. They are asked to detect alien
‘‘spies’’ by identifying ungrammatical sentences.

In training blocks, participants hear thirty grammatical
sentences in random order while viewing an image of four
star-chested aliens.

After each training block, participants hear twenty-four
test sentences, half grammatical. After each sentence,
participants make a grammaticality judgment by a
mouse-click on a line whose left pole represents ‘‘definitely
grammatical’’, whose right pole represents ‘‘definitely
ungrammatical’’, and which allows every gradient
response in between. There is no time limit. The computer
records a binary response, corresponding to left or right of
center, and a continuous ‘‘discrimination score’’ calculated
by subtracting from 100 the percentage of the line lying
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a repetition, positive values are ascending, 1 represents a step to the next
itch range.
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Fig. 2. Repetition rates by context and position.

C. Dawson, L. Gerken / Cognition 120 (2011) 350–359 353
between the response and the correct pole. Participants
experience four training-test cycles on the same grammar.
2.1.6. Materials: grammar-learning phase
The ‘‘Qixian’’ and ‘‘spy’’ sentences are again five tones

long. Each participant is trained using one of two five-tone
vocabularies. The first contains MIDI values 57, 60, 63, 66
and 67; the second contains MIDI values 58, 59, 62, 65
and 68. Each set shares two tones with the context
vocabulary.

For half of participants, grammatical sentences follow
an AABCD pattern (a repetition at the beginning and no-
where else), while the ungrammatical sentences have a
DCBAA pattern. For the other half, the labels are reversed.

Of 120 possible sentences in each grammar, 60 are used
as training items, and 24 as test items. The chosen items
were balanced for pitch contour, with falling and rising
intervals equally frequent at each position. Each sentence
in one grammar has a sequential mirror-image in the other.

Thirty training sentences are used in the first two learn-
ing blocks; the other thirty in the last two blocks. On odd-
numbered blocks, participants are tested with items from
the training vocabulary; on even blocks they hear items
from the opposite vocabulary. Both vocabularies were used
to test whether the context manipulation has an effect on
the level of abstraction at which participants learn the
grammar.
2.2. Results

The central question is whether prior exposure to the
Smooth distribution will impair detection of the repetition
rule. If so, this will suggest that learners model the full
interval distribution, which (partially) explains away the
training repetitions. The key comparison is therefore be-
tween the Smooth groups and the non-Smooth groups.

A secondary question is what effect the overall rate of
repetitions, independent of the Smoothness constraint,
has on learning the rule. If broader structure is irrelevant
and learners are influenced only by the amount of repeti-
tion they are exposed to, there are two possibilities: if
background repetition has a desensitizing effect, then the
Uniform group should outperform the High Variance Rep-
etition group, which in turn should outperform the Low
Variance Repetition group. Similarly, the High Variance
Smooth group should outperform the Low Variance
Smooth group. If background repetitions highlight identity
relationships, the reverse rankings should obtain. If quali-
tative structure is primary, however, any effect of Repeti-
tion Rate and/or Variance should be subordinate to the
shape of the interval distribution.

In order to examine the effects of Context condition on
participants’ ability to distinguish grammatical from
ungrammatical test items, we analyzed both binary and
confidence-weighted responses using a general linear
mixed model. The two yielded qualitatively identical re-
sults, and so for concision and ease of interpretation, we
report only the binary results.

Fixed effects of Context (five levels: RepetitionHV,
RepetitionLV, SmoothHV, SmoothLV and Uniform), Block
(four levels: 1–4), and a covariate based on melodic
discrimination prior to grammar-learning, were included.
Test grammar (AABCD vs. DCBAA) was examined ini-
tially, but did not have an effect, and hence was dropped
from further analyses. Three orthogonal planned compar-
isons among the five Context conditions were of interest.
The comparison of greatest interest (the ‘‘Smoothness
contrast’’) is between the two Smooth groups, on the
one hand, and the other three groups, on the other. Its
coefficient, bS, represents the difference in mean percent
of correct responses between the two Smooth conditions
and the other three groups. The ‘‘Repetition Rate’’ con-
trast examines the effect of repetition rate among the
non-Smooth contexts, assigning numerical scores to
these three conditions in proportion to the rate of repe-
tition in each. Its coefficient, bRR, represents the increase
in percentage of correct responses for each 5% increase
in the rate of repetitions in the context. The ‘‘Variance
contrast’’ compares the two Smooth groups. A positive
value of its coefficient, bV, denotes an advantage in
percent of correct responses for the High Variance
group.

Orthonormal polynomial contrasts were used for the
Block factor. A positive linear coefficient (bL) captures
improvement over Blocks, while a negative quadratic
coefficient (bQ) captures leveling off of performance. The
cubic coefficient (bC) captures additional discrepancies be-
tween the same-vocabulary and transfer-vocabulary
blocks, with positive values denoting a transfer advantage.

The ‘‘Baseline Discrimination’’ covariate was based on
the number of correct responses in the 20 probe trials dur-
ing the Context phase. Scores were standardized within
each Context condition. A positive coefficient for bBD would
validate the intuition that some general tone processing
ability is needed for both tasks.

Finally, four random effects, corresponding to between-
subjects variability in overall performance as well as the
polynomial Block coefficients, were estimated along with
their correlations.
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The first model included all interaction terms among
Context, Block and Baseline Discrimination. Maximum-
likelihood parameter estimates were computed using the
lme function from the nlme package in R (Pinheiro et al.,
2009). A second model contained a reduced set of random
effects: only a random intercept and slope. The higher-or-
der random effects provided a significantly better fit as
determined by a Likelihood Ratio Test (v2(7) = 32.36,
p < 0.0001), and hence were retained. Next, the full model
was compared to one without interactions involving the
covariate. This time, the simpler model did not exhibit a
significantly worse fit (v2(19) = 20.81, p = 0.34). Moreover,
removing the Context � Block interactions did not signifi-
cantly worsen the fit (v2(12) = 7.00, p = 0.86), and so the
pure main effects model was retained.

Critically, the Smoothness contrast was significant, with
fewer correct responses in the Smooth groups (bS = �8.7%,
SE = 3.2%, t(114) = 2.75, p < 0.01). Repetition Rate was not
significant (bRR = 1.1%, SE = 1.2%, t(114) = 0.96, p = 0.34),
nor was Variance (bV = �3.3%, SE = 4.9%, t(114) = 0.66,
p = 0.51). The linear Block effect was significant (bL = 10.2,
SE = 1.5, t(357) = 6.86, p < 0.001), reflecting improvement
over blocks. The quadratic effect was marginally significant
(bQ = �2.0, SE = 1.19, t(357) = 1.72, p = 0.09), reflecting a
leveling off in performance. The cubic term was significant
as well (bC = 1.9, SE = 0.9, t(357) = 2.08, p < 0.05), with bet-
ter performance in transfer blocks. A significant positive
relationship obtained between Baseline Discrimination
and grammar-learning performance (bBD = 5.9, SE = 1.6,
t(114) = 3.80, p < 0.001). Mean percent correct by Context
and Block is depicted in Fig. 3.
2.3. Discussion

The primary prediction in this experiment was that par-
ticipants in the Smooth environment would discount the
evidence for the repetition pattern, exhibiting decreased
grammar-learning performance, since a high rate of repeti-
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Fig. 3. Mean performance by context and block. Error bars are ±1SEM.
tion is produced by Smoothness alone. This prediction was
supported. This effect cannot be due to desensitization to
repetition, as greater repetition did not significantly im-
pact learning with or without the Smoothness constraint,
and in fact, the numerical difference favored greater repe-
tition. Though a significant positive effect of repetition rate
might appear in a larger or less variable sample, what is
clear is that the strongest predictor of performance is the
qualitative shape of the context distribution.

These findings suggest that learners in this experiment
are modeling the alien environment, and forming hypoth-
eses about the input-generation process. They seem to use
this model to guide subsequent learning in the environ-
ment, by assessing the evidentiary value of a cue to new
potential underlying structure. Here, in the Smooth envi-
ronment, repetitions do not appear to be an essential com-
ponent of the environment at all, whereas without
Smoothness it is necessary to represent them in order to
understand the distribution of intervals. Greater improve-
ment during transfer-vocabulary blocks suggests that
learners may be entertaining multiple grammar hypothe-
ses, with the vocabulary change serving as a hint that the
relevant rule is vocabulary-independent.

We must acknowledge two alternative interpretations
of the Smooth disadvantage. The first is that learners are
collapsing across rising and falling intervals and encoding
only absolute interval magnitude. In that case, listeners
could be focusing on the most common absolute interval,
which is a repetition in the Repetition conditions, and a
step of one in the Smooth conditions. Though we cannot
firmly rule out this possibility, it would seem to predict
that the Uniform group should also suffer, since there, sin-
gle steps are also the most frequent (and in fact, the ratio
between single step and repetition frequencies is greater
than in either Smooth group). Instead, the Uniform group
was closer to the Repetition groups.

A second alternative is that, since melodies in partici-
pants’ natural environment are Smooth, participants in
the Smooth groups more readily engaged their prior pre-
conceptions about the structure contained in music. While
this would not contradict our account, attributing these
prior preconceptions to Smoothness in the environment
would be begging the question (though this account still
requires that people encode the Smoothness in melodies
at some level). Further research, perhaps with less natural
properties, is needed to disentangle prior biases from in-
laboratory learning.
3. Bayesian model

In order to quantify ‘‘best-case’’ behavior predicted for a
learner with access to the true causal structure of the
environment, an idealized generative statistical learning
model was constructed. It ‘‘observed’’ an abstraction of
the melodies that the human participants heard. The use
of such a model is not a claim about psychological mecha-
nisms involved in grammar-learning; it is merely an
attempt to make explicit the inferences that result from
the rational use of melodic data, given a particular set of
prior beliefs about how melodies are generated.
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3.1. Model definition

A generative probabilistic model has two components:
a probability distribution (likelihood) over possible data
points given a set of unknown parameters, and a prior be-
lief distribution over possible values of those parameters.
For simplicity, the likelihood component of our model
entertains only the two qualitative processes used to gen-
erate melodies in the experiment. In the first process, rep-
etition has a particular probability p, and the other V � 1
tones are equiprobable (where a uniform distribution is
the case with p = 1/V). In the second, pitches are normally
distributed around the value of the preceding tone. The
model contains four free parameters, p1–p4, determining
the probability of repetition at each of the four sequential
positions in the absence of Smoothness. A fifth parameter
h governs the variance of the normal distribution produced
by the Smoothness constraint. A final parameter ps governs
the extent to which the distribution is determined by the
Smoothness constraint. Finally, melodies are assumed to
be either grammatical or ungrammatical. The two types
are allowed to have different repetition probabilities at
each position, but are assumed to be subject to the same
smoothness constraint, with the same mixing weight.

We use conjugate priors for all parameters, which have
an ‘‘equivalent data’’ interpretation (Box and Tiao, 1973),
i.e., their parameters represent a summary of previous
imaginary data. The prior expected interval variance was
set to 6, according to the interval distribution in children’s
folk music (Dawson, 2007), and the prior expected repeti-
tion probabilities were set to capture a uniform interval
distribution. Two free parameters were varied across sim-
ulation runs. The first, N, determined the strength of the
prior (in ‘‘equivalent melodies’’).1 The second, S, deter-
mined the expected weight of the Smoothness constraint.
1 Human learners presumably do not attach the same weight to generic
prior experience that they do to specific training items in context. Hence, N
should be set to a considerably smaller value than the actual number of
melodies encountered in life.
For details on the prior and likelihood functions, see
Appendix A. Example likelihood functions are shown in
Fig. 4, and a summary of the model parameters is given
in Table 1.

3.2. Simulations and evaluation

The model ‘‘heard’’ 200 Context melodies, abstractly
identical to those encountered by the human participants,
as well as grammatical training melodies. The model’s
grammatical discrimination performance was evaluated
after 30, 60, 90 and 120 training melodies, corresponding
to the four test blocks in the experiment.

The bulk of the simulation process consisted of estimat-
ing a joint posterior distribution over the ten data-genera-
tion parameters, fp1;jg

4
j¼1, fp0;jg

4
j¼1, h and ps. This estimation

was accomplished using Markov Chain Monte Carlo sam-
pling (Gilks et al., 1996) (see Appendix A for details). Sim-
ulations were run for each of the five Context conditions,
with each of the four levels of training, and at three values
each of the prior parameters N and S. N was set to 1, 20 or
200, and S was set to 0.1, 0.5 or 0.9, where higher values
reflected greater prior weight for the smoothness
constraint.

Of central interest was not what parameter values the
model would infer, but how accurately it could infer the
grammaticality of novel melodies. Since the sampling pro-
cedure produces a distribution of thousands of values, we
can assign grammaticality probabilities to each test sen-
tence for each set of parameter values in the sample. For
each of the 24 test melodies, at each set of parameter val-
ues, the model can make a probabilistic binary decision.
The mean proportions of correct responses for each simu-
lation run are plotted in Fig. 5.

In this first set of simulations the model made no
assumption about the grammaticality of the Context melo-
dies, and hence they informed both fp1;jg

4
j¼1 and fp0;jg

4
j¼1

equally (as well as the general parameters h and ps). Train-
ing melodies, which were known to be grammatical, only
influenced parameters relevant for grammatical melodies
(i.e., all but fp0;jg

4
j¼1). To assess whether this ‘‘agnosticism’’



Table 1
Descriptions of the model parameters.

Parameter Description Learned or set?

fp1;jg
4
j¼1 and fp0;jg

4
j¼1

‘‘Pure’’ repetition probabilities in the absence of smoothness. Separate values for
grammatical and ungrammatical items, and for each sequential position.

Learned

h Precision of smoothness constraint (inverse of the variance). Higher values
reflect a greater tendency for small intervals.

Learned

ps Mixing weight of smooth process. Zero represents no smoothness constraint;
one represents a distribution completely determined by smoothness.

Learned

N Prior ‘‘Equivalent Sample Size’’. Higher values reduce the influence of the data
relative to the prior.

Set

S Prior estimate for ps Set
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Fig. 5. Performance of the model by block, condition and parameter settings.
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about the Context melodies was critical, we ran four addi-
tional simulations in which we varied the probability of
grammaticality assigned to the Context melodies, repre-
senting an additional parameter, G (previously fixed to
0.5). When G is 0, grammatical parameters are set using
only the prior and the training melodies; when G is 1, Con-
text and training are both used for the grammatical model,
while the parameters for ungrammatical melodies come
entirely from the prior. In these runs, the N and S parame-
ters were set to their intermediate values of 20 and 0.5,
respectively. Results are displayed in Fig. 6.

3.3. Discussion

For all parameters, the model performs more poorly in
both Smooth conditions than in the other conditions, like
the human participants. When too high a mixture weight
is assigned to the Smoothness constraint (S = 0.9), the data
conveys little information about repetition probabilities,
since most of the information in the interval distribution
is assumed to reflect Smoothness. This makes it difficult
to learn the rule in any condition, except when the prior
is very weak (N = 1). The smaller the value of S, the better
the model performs across conditions, as a greater propor-
tion of the interval evidence is taken to reflect particular
repetition patterns. Performance degrades with very large
values of N, as an overly strong prior makes the model
unresponsive to the data, sticking too strongly to its
‘‘preconceptions’’.

The model exhibits a positive effect of repetition rate in
the non-Smooth groups, with fairly large differences
between the two Repetition groups in most cases. The
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ranks of these three conditions was the same for the hu-
mans, though the differences were not statistically signifi-
cant. Human participants were not told that a grammar
existed during the Context phase, and hence might be ex-
pected to learn only general properties at that stage, in
which case quantitative repetition rates may have been
less influential for them than for the model which encoded
all data in fine detail. When the model treated the Context
melodies as completely grammatical, additional repeti-
tions at both the initial and final position made both the
grammatical and ungrammatical test melodies more likely
under the model’s grammar, and hence neither helps nor
hurts discrimination. It may be that a subset of humans
failed to make the distinction between Context and train-
ing, behaving as though everything they heard was
grammatical.

For the two Smooth conditions, the model predicted
slightly poorer performance in the Low Variance case.
The humans exhibited the opposite pattern until the last
block, though again the difference was not significant. Even
if human learners are sensitive to the variance of the
Smooth distribution, the very small effect exhibited by
the model suggests that a large sample may be needed to
detect this difference.

The present model is useful for its quantitative realiza-
tion of the idea that a general environmental feature can
explain away evidence for a particular underlying struc-
ture in the input. The model captures a difference in hu-
man performance between two context conditions
(Repetition and Smooth) that would be difficult to explain
without supposing that human learners generatively mod-
el their input. If they were merely trying to learn depen-
dencies between features and categories, the frequency of
repetition alone, and not its relationship to the broader
environmental structure, should be dominant in driving
performance.

Although the present model captures the qualitative
performance of the human participants, it should not be ta-
ken literally as an account of psychological mechanisms.
For one, the mathematical forms of the likelihood and prior
distributions were chosen largely for computational con-
venience. Aside from the qualitative shapes of these distri-
butions (i.e. unimodal and smooth), their particular choices
should not be taken as psychological hypotheses.

More importantly, the hypothesis space with which the
model is endowed is extremely narrow, and is suited par-
ticularly to this task. While differences between conditions
are still meaningful, this model is freed from some difficul-
ties facing humans; at the same time, it could not learn a
range of other grammatical regularities that humans could
likely learn. For example, the model only has access to ab-
stract pitch information, and does not have to learn how to
measure intervals, nor does it need to learn how to transfer
its knowledge across vocabularies. In ongoing research we
are examining the role of the tone vocabulary. Will differ-
ent results obtain if participants are not required to switch
between two tone sets? What effect does the use of uneven
step sizes have on inference?

On the flip side, the model cannot represent pitch con-
tour, special roles for particular pitches, or dependencies
between non-consecutive tones, all of which are poten-
tially meaningful features of a melodic environment; nor
does it attribute special salience to repetition at edges
(Endress et al., 2005). We are currently investigating
whether Smoothness might in fact have a facilitative effect
if the grammar being learned is based on contour, rather
than repetition, for example.
4. General discussion

We have used both behavioral and computational
methods to investigate the contribution of rational, gener-
ative ‘‘explaining away’’ to induction of an abstract rule for
tone sequences. In sequences of musical tones, repetition
has a dual nature, first as an identity relation between
two consecutive events, and second as an interval of mag-
nitude zero between two tones on a continuum. When a
repetition occurs, it is ambiguous which of these two
descriptions should be attached to it. Our central finding
was that adult humans appear to take into account a global
‘‘Smoothness’’ constraint on melodies, which have a statis-
tical tendency to move in small intervals, to set a baseline
expectation for the rate of repetitions. This reduces the
informational value of a repeated tone as a cue to an ab-
stract rule. A Bayesian model that entertains a smoothness
constraint and also allows for special ‘‘sameness’’ relations
confirms the intuition that this pattern of results is to be
expected under a rational hypothesis-testing account of
rule-induction.

These findings are of substantial relevance to the rule-
learning literature following Marcus et al. (1999), and are
particularly supportive of our earlier conjecture (Dawson
and Gerken, 2009) that 7.5-month-olds may have ‘‘learned
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to fail’’ at learning AAB rules by acquiring knowledge about
tonality and the smoothness of natural melodies. A similar
account applies to ABA rules, since Smoothness makes
non-adjacent repetitions more frequent as well (and, in-
deed, by Dawson (2007), a normal distribution fits inter-
vals with lag 2 as well). It will be revealing to see
whether the present model behaves like infants in earlier
studies after familiarization with natural musical contexts.
We are also adapting the present experiment to infants to
determine whether the explaining away process observed
in adults occurs in the laboratory with infants as well. If
these extensions bear out as predicted, we will have con-
verging evidence that ‘‘metalearning’’ plays an important
role in the formation of apparently domain-specific biases
and constraints.

In order to explain away, learners must be explaining.
The present findings add to a growing literature (Gopnik,
1998; Schulz and Bonawitz, 2007; Xu and Garcia, 2008;
Gerken, 2010) suggesting that learning is like science: in
addition to making specific predictions, an important role
of cognition is to build explanatory models of the environ-
ment, and to construct and test hypotheses about why the
world works as it does.

Appendix A. Modeling details

A.1. Model definition

Each melody i is represented as a sequence of five inte-
gers, ti,1 through ti,5, ranging from 1 to V in ascending order
of pitch, where V is the number of tones in the vocabulary.
For mathematical convenience, ti,j is determined by a prob-
ability distribution f t�i;j

� �
over the interval [0,V], and a

deterministic function rounding t�i;j up to the nearest inte-
ger. When j = 1, f ðt�i;jÞ is always uniform. For j > 1,
f ðt�i;jjti;j�1Þ is given by:

f t�i;jjti;j�1

� �
¼ psqs t�i;jjti;j�1

� �
þ ð1� psÞqr t�i;jjti;j�1

� �
ð1Þ

The functions qr t�i;jjti;j�1

� �
and qs t�i;jjti;j�1

� �
, are the ‘‘repeti-

tion’’ and ‘‘smooth’’ densities over tones, given by:

qr t�i;jjti;j�1

� �
/ 1½ti;j�1�1;ti;j�1 � t�i;j

� �
pg;j�1

þ 1� 1½ti;j�1�1;ti;j�1 � t�i;j
� �� �1� pg;j�1

V � 1
ð2Þ

qs t�i;jjti;j�1

� �
/ 1½0;V � t�i;j

� �
h1=2 exp �1

2
h t�i;j � ti;j�1

� �2
� �

ð3Þ

where 1[a,b](x) is the indicator function which is 1 when
x 2 [a,b] and 0 otherwise.

The prior distributions of ps, h and {pg,j} are given by:

fps ðpsÞ / p4NS
s ð1� psÞ4Nð1�SÞ ð4Þ

fpðpg;jÞ / p
N
V
g;jð1� pg;jÞ

ðV�1ÞN
V ð5Þ

fhðhÞ / h
4N
2 �1 exp �6� 4N

2
h

� �
ð6Þ

Here, N represents the prior ‘‘equivalent sample size’’ (in
melodies), and S represents the prior strength of the
smoothness constraint. The ps and h parameters apply to
four intervals per melody, for a total of 4 N, whereas each
pg,j applies to only one interval per melody, for a total of
N. The 6 in the fh(h) expression represents the prior vari-
ance in the smooth distribution, fixed by the empirical dis-
tribution in Dawson (2007).
A.2. Sampling procedure

In Gibbs sampling, the full parameter set is partitioned,
and at each step a sample is taken from the conditional dis-
tribution of one block given all the others. A sample is ta-
ken for each block at each iteration, conditioning on the
most recent values for the other blocks. We used separate
blocks for (1) ps, (2) h and (3) {pg,j}. In a final block, unla-
beled melodies were assigned a grammaticality label at
each step and individual intervals were hard-assigned to
either the repetition or smooth distributions, both accord-
ing to their conditional posterior probabilities. The
hard-assignment is performed to simplify sampling; each
interval should be thought of as coming from a weighted
mixture of the two distributions.

Due to the truncation of the smooth distribution, the
conditional posterior for h is nonstandard (it would be
Gamma otherwise). Therefore, a Metropolis-Hastings step
(Metropolis et al., 1953; Hastings, 1970) was incorporated,
using a Gamma as the proposal distribution.

The sampler was run for 100,000 iterations at each
parameter combination. The first 50,000 iterations were
discarded as ‘‘burn-in’’. The remaining 50,000 samples
were used to assign grammaticality probabilities to the
test melodies.
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